

The Hepatic Matrisome: From Regenerative Hepatology to Drug Target and Biomarker Discovery

MASSIMO PINZANI, MD, PhD, FRCP, FAASLD, MAE

Emeritus Professor of Medicine UCL Institute for Liver and Digestive Health Royal Free Hospital, London, UK

m.pinzani@ucl.ac.uk

www.ucl.ac.uk/medicine/liver-and-digestive-health

University College London Hospitals Biomedical Research Centre

ECM Functions

ECM Components

Fibrous proteins

ECM: basement membrane and interstitial matrix

Basement Membrane

Interstitial Matrix

The 28 Collagens - Structure and Function

Matrisome

Matrisome

Recent development of experimental techniques (e.g., tissue decellularization) have allowed the characterization of ECM composition by proteomic and other "omic" approaches to provide new insights into ECM biology

Development of Liver Scaffolds by Decellularization

Lessons from Decellularized Human Liver

Mazza G et al, Scientific Report 2015; Mazza G et al, Scientific Report 2017

Human whole organ-decellularization

Human tissue agitation-decellularization

Institute for Liver and Digestive Health

Our Platform Technology: Multiple Applications

Alternatives to Liver Transplantation (OLT)

Our Platform Technology: Multiple Applications

Clinical Use of Bio-engineered Hydrogels and Tissue Implants

Inborn Errors of Metabolism

- Crigler-Najiar syndrome type 1 Familial hypercholesterolemia Factor 7 deficiency Glycogen storage disease type 1 Infantile Refsum disease PFIC2 Urea cycle defects
 - Ornithine transcarbamylase deficiency Arginosuccinate lyase deficiency Carbamoylphosphatase synthase type 1 deficit Citrullineamia

Acute Liver Failure

DILI Viral Mushroom poisoning Post-surgical Acute fatty liver of pregnancy

Acute on Chronic Liver Failure

Alpha-1-antitrypsin deficiency Alcoholic Viral

Human Liver ECM Hydrogel Characterization

Human liver ECM hydrogels are derived from decellularized human liver using a protease-free step. Resultant hydrogels are characterized by preserved ECM proteins compositions, porous 3D architecture, tissue stiffness of 1kPa with tissue stiffness stability from 4°C to 40°C

From 3D ECM Scaffolds to Liver Bio-Ink

Bio-engineered Human Liver ECM Hydrogel: Biocompatibility

Human liver ECM hydrogels were reseeded with HepG2 for 7 days in vitro and ectopically implanted intra-omentum in immunodeficient mice for 3 weeks.

Bio-engineered Human Liver ECM Hydrogel: Biocompatibility

Engineered ECM hydrogel (HepG2) showed excellent engraftment after 3 weeks post implantation. Human positive cells were detected as showed by Ku80 staining (IHC, brown colour). The oementum appears to be the mostoptimal implantation site for its vascularization capability

Bio-printed Cholangiocytes: Ductal Formation

Bile Duct Bio-engineering

Brevini T et al. J Hepatol 2020;73:918-932

Our Platform Technology: Multiple Applications

From Discovery to Clinical Applications

No licensed antifibrotic drugs after more than 40 years of active research (the case of liver fibrosis)

No translation into clinical trials and very high failure rate in the trials so far performed (>95%)

cultures on plastic

chronic liver injury: no model is able to reproduce human pathophysiology

Wrong targets?

Wrong validation methodology?

Understanding Liver Fibrosis

Need to focus on mechanisms and preclinical models easier to translate into clinical applications:

The fibrotic microenvironment :

a. Hypoxia and neo-angiogenesis

b. Anaerobic metabolism (e.g. lactate)

c. 3D in vitro models

d. Hepatic matrisome

e. Tissue stiffness and contraction

3D Scaffold Bio-engineering: Hepatocytes

Mazza G et al. Sci Rep 2017

3D Scaffold Bio-engineering: Stellate Cells

Mazza G et al. Sci Rep 2017

HSC Gene Expression: 2D vs. 3D

LX2 cells grown in 3D ECM scaffold from healthy liver present a less activated phenotype when compared with the same cells grown on plastic

Human liver ECM scaffolds engineered with LX2 stellate cells are highly responsive to TGF-β stimulation and up-regulate key pro-fibrogenic genes

3D Human Scaffold Cultures Vs. Other 3D Systems

Understanding Liver Fibrosis

Need to focus on mechanisms and preclinical models easier to translate into clinical applications:

The fibrotic microenvironment : a. Hypoxia and neo-angiogenesis b. Anaerobic metabolism (e.g. lactate) c. 3D in vitro models d. Hepatic matrisome

e. Tissue stiffness and contraction

Cirrhotic Human Liver Scaffolds Retain Unique Protein Signatures

Quantitative proteomic analysis of cirrhotic (PSC) and healthy liver scaffolds was performed in order to identify extracellular related proteins. Our previous work (Mazza G et al Sci Rep 2017 and Mangione P, Mazza G et al J Proteomics 2017) firstly described the increase sensitivity of detecting extracellular proteins after decellularization. Quantitative proteomic of cirrhotic and healthy scaffolds identified a total of 1114 proteins. Although cirrhosis is mainly characterized by an increase (quantitative) in already present collagens **is possible to identify unique proteins (quality signatures) in cirrhotic scaffolds with statistical significant change compared to healthy liver scaffolds**

Cirrhotic Human Liver Scaffolds Retain Unique Protein Signatures

Gene names	p-value	Gene names	p-value	Gene names	p-value	Gene names	p-value	Gene names	p-value	Gene names	p-value	Gene names	p-value	Gene names	p-value
IGKV3-11;IGKC	2.13E-05	EFEMP1	0.001654	FBLN5	0.008763	CRTAC1	0.01449	SERPINA1	0.025274	IGKV1D-33	0.030131	IGLC3;IGLC2;IGLC6	0.0394174	HBB	0.044762
BST1	0.000146	HSD17B12	0.002194	CTSS	0.008859	MYO1C	0.01459	H3F3 A-B-C;HIST3H3;	0.026002	UGT2B7	0.030686	NDUFB10	0.039533	LGALS3	0.045656
TMEM43	0.000207	TNS3	0.002660	C1QB	0.009055	RRAS	0.01508	GNAI2	0.026326	IGKV1-5	0.030809	TNS1	0.040605	CXCL12	0.046176
LXN	0.000263	FLOT1	0.004143	S100A9	0.0103688	MYOF	0.01694	PDLIM7	0.026517	АРОН	0.031237	GNB1	0.040771	AOC3	0.046702
TPSAB1;TPSB2	0.000441	CLTC	0.004354	LOXL1	0.0105657	FLOT2	0.017647	THSD4	0.026729	FLNA	0.034109	MY01D	0.041279	COL5A1	0.047362
CMA1	0.000650	IGKV3-15;3-7; IGKV3OR2-268;	0.004652	TGFB1I1	0.0114113	ADH1B	0.018949	IGKV3	0.027050	DRG1	0.034959	SEC61A1;SEC61A2	0.041344	TBL2	0.048181
СРАЗ	0.000791	IGHG1	0.005110	HLA-DRA	0.011745	IGFBP7	0.019384	HNRNPM	0.028411	EMILIN1	0.036259	FBLN2	0.041856	IGHG3	0.049672
DNAIB9	0.000965	CTSG	0.005589	TRAM1	0.0121993	FRI N1	0.019681	FRN1	0.028437	PSMA5	0.036515	IEI16	0.042079		01010072
EHI 2	0.001114		0.005909	GPX3	0.0120424	VCAN	0.020772	FHD2	0.020022		0.027810		0.042175		
IGKV2D-28	0.001222	MFAP4	0.006719	SEC22B	0.0131714	TRIM25	0.022131	LTBP1	0.029929	VDAC2	0.039389	CAV1	0.044028		

Unique protein signatures showed key proteins (gene names) involved in fibrosis/cancer of other organs or already described in liver diseases. Key proteins (highlighted in red) are currently under investigation for biomarkers and/or therapeutics development.

INNOVATION & ENTERPRISE

Awards for Innovation and Enterprise 2019

Dr Giuseppe Mazza

UCL Provost's Spirit of Enterprise Award

Prof. Krista Rombouts

Institute for Liver and Digestive Health