Sistema Socio Sanitario

Regione Lombardia

GRAND ROUNDS CLINICI DEL MERCOLEDÌ con il Policlinico San Matteo

Aula Magna "C. Golgi" & WEBINAR

Fondazione IRCCS Policlinico San Matteo

ATS Pavia

14 Febbraio 2024

Emanuela Boveri

SC Anatomia Patologica

From Ph- chronic myeloproliferative neoplasm (cMPN) to acute erythroid leukemia

2012

- F, 58 y
- Thrombocytosis
- Hb and WBC within normal limit
- Spleen and liver within normal limit
- JAK2 V617F mutation: VAF 32%
- Cytogenetics: 46,XX

Evolving classifications

	WHO 2008	WHO 2017	WHO 2022	ICC 2022
2012	Ph- MPN, ET	Ph- MPN, ET	Ph- MPN, ET	Ph- MPN, ET

Therapy: HU, periodic follow up

September 2023

• 69 y

- Leukocytes 1.830 x10⁹/L
- Hemoglobin 63 g/L
- Platelets 112 x10⁹/L
- LDH 1021 mU/mL

BM re-evaluation in Ph- MPN

- Evolution towards:
 - Post-ET myelofibrosis
 - Acute leukemia
- Therapy-related modification(s)

Megaloblastic changes

MDS-ery

Our case

WHO 2017

Percentage of BM cells that are erythroid precursors	Percentage of BM (or PB) cells that are myeloblasts	Prior therapy	Defining WHO genetic abnormality present	Meets criteria for AML with myelo- dysplasia-related changes	4th Edition diagnosis (2008)	Revised 4th edition diagnosis (2017)
≥ 50%	n/a	yes	n/a	n/a	Therapy-related myeloid neoplasm	Therapy-related myeloid neoplasm
≥ 50%	≥ 20%	no	yes	n/a	AML with recurrent genetic abnormality	AML with recurrent genetic abnormality
≥ 50%	≥ 20%	no	no	yes	AML with myelodysplasia- related changes	AML with myelodysplasia- related changes
≥ 50%	≥ 20%	no	no	no	AML, NOS; acute erythroid leukaemia (erythroid/myeloid subtype)	AML, NOS (a non-erythroid subtype)
≥ 50%	< 20%, but ≥ 20% of non-erythroid cells	no	no ^a	n/a	AML, NOS; acute erythroid leukaemia (erythroid/myeloid subtype)	MDS ^b
≥ 50%	< 20%, and < 20% of non-erythroid cells	no	no ^a	n/a	MDS⁵	MDS⁵
 > 80% immature erythroid precursors with > 30% proerythroblasts 	< 20%	no	no ^a	n/a	AML, NOS; acute erythroid leukaemia (pure erythroid subtype)	AML, NOS; pure erythroid leukaemia

Table 1.01 Diagnostic approach to myeloid neoplasms in which erythroid precursors constitute ≥ 50% of the nucleated bone marrow (BM) cells

AML, acute myeloid leukaemia; BM, bone marrow; MDS, myelodysplastic syndrome; n/a, not applicable; NOS, not otherwise specified; PB, peripheral blood.

^a Cases of AML with t(8;21)(q22;q22.1) resulting in the *RUNX1-RUNX1T1* fusion protein, AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22) resulting in the *CBFB-MYH11* fusion protein, or acute promyelocytic leukaemia with the *PML-RARA* fusion protein may rarely occur in this setting with < 20% blasts, and those diagnoses take precedence over the diagnosis of either AML, NOS or MDS.

^b Classify according to the myeloblast percentage of all BM cells and PB leukocytes, along with other MDS criteria.

Our case: p53 protein over-expression

Journal of Hematopathology (2021) 14:15–22 https://doi.org/10.1007/s12308-020-00431-7

ORIGINAL ARTICLE

p53 immunohistochemistry discriminates between pure erythroid leukemia and reactive erythroid hyperplasia

Christina Alexandres¹ • Basma Basha² • Rebecca L. King³ • Matthew T. Howard³ • Kaaren K. Reichard³

What about *TP53* gene? And *JAK2*?

NGS analysis on BMMC at time of evolution (2023)

• TP53:

□R273H (missense): VAF 91.6% □R282W (missense): VAF 1.2%

• *JAK2*:

UV617F (missense): VAF 71,6%

- Germinal?
- Somatic?
 - If somatic, present at time of ET diagnosis?

The importance of being... far sighted NGS on PBMC at diagnosis of ET (2012)

	2012 (PB	2023 (BMMC, VAF)	
	T-lymphocytes	Circulating NC	
JAK2 V617F	Absent	32%	71,6%
TP53 R273H	Absent	Absent	91.6%
TP53 R282W	Absent	Absent	1.2%
	somatic and not germinal	absent at onset of MPN	

Cytogenetics: chromosome 17 deletion

Diagnosis

WHO 2022

• Acute erythroid leukemia

Table 7. Acute myeloid leukaemia.

Acute myeloid leukaemia with defining genetic abnormalities Acute promyelocytic leukaemia with PML::RARA fusion Acute myeloid leukaemia with RUNX1::RUNX1T1 fusion Acute myeloid leukaemia with CBFB::MYH11 fusion Acute myeloid leukaemia with DEK::NUP214 fusion Acute myeloid leukaemia with RBM15::MRTFA fusion Acute myeloid leukaemia with BCR::ABL1 fusion Acute myeloid leukaemia with KMT2A rearrangement Acute myeloid leukaemia with MECOM rearrangement Acute myeloid leukaemia with NUP98 rearrangement Acute myeloid leukaemia with NPM1 mutation Acute myeloid leukaemia with CEBPA mutation Acute myeloid leukaemia, myelodysplasia-related Acute myeloid leukaemia with other defined genetic alterations Acute myeloid leukaemia, defined by differentiation Acute myeloid leukaemia with minimal differentiation Acute myeloid leukaemia without maturation Acute myeloid leukaemia with maturation Acute basophilic leukaemia Acute myelomonocytic leukaemia Acute monocytic leukaemia Acute erythroid leukaemia Acute megakaryoblastic leukaemia

ICC 2022

• Acute myeloid leukemia (AML) with mutated TP53

...moving to a more genetically-defined classification

Table 21. Myeloid neoplasms with mutated TP53

Туре	Cytopenia	Blasts	Genetics
MDS with mutated TP53	Any	0-9% bone marrow and blood blasts	Multi-hit TP53 mutation* or <i>TP53</i> mutation (VAF > 10%) and complex karyotype often with loss of 17p†
MDS/AML with mutated TP53	Any	10-19% bone marrow or blood blasts	Any somatic <i>TP53</i> mutation (VAF $>$ 10%)
AML with mutated TP53	Not required	≥20% bone marrow or blood blasts or meets criteria for pure erythroid leukemia	Any somatic <i>TP53</i> mutation (VAF $>$ 10%)

Our patient: supportive care, DOD within weeks from diagnosis

A History and Current Understanding of Acute • Erythroid Leukemia

Coltoff Alexander

Table 1

Clinical Lymphoma, Myeloma and Leukemia, Vol. 23, No. 8, 583-588 © 2023

- Giovanni Di Guglielmo is credited for the first description of an erythroid-predominant leukemia in the early 20th century
- Pancytopenia is the most frequent clinical presentation

Year	Criteria	Nomenclature	Definition
1976	FAB ^a Co-operative group	AML-M6	 Erythroid precursors ≥ 30% Dyserythropoiesis ≥ 10%
1985	Revised FAB Co-operative group	AML-M6	 Erythroblasts ≥ 50% of all nucleated bone marrow cells Prominent dyserythropoiesis Myeloblasts ≥ 30% of the nonerythroid cell population
2001	WHO ^b 3rd Edition	Acute erythroid/myeloid leukemia Pure erythroid leukemia	 Erythroid precursors ≥ 50% of all bone marrow cells Myeloblasts ≥ 20% of the nonerythroid cell population Erythroid precursors with minimal differentiation ≥ 80% of all marrow cells No significant myeloblastic component
2008	WHO 4th Edition	Erythroleukemia, erythroid/myeloid Pure erythroid leukemia	 Erythroid precursors ≥ 50% of all bone marrow cells Myeloblasts ≥ 20% of the nonerythroid cell population Erythroid precursors with minimal differentiation ≥ 80% of all marrow cells No significant myeloblastic component
2016	Revised WHO 4th Edition	Acute erythroid leukemia (pure erythroid type)	1. Erythroid precursors $> 80\%$ of all bone marrow cells of which $\ge 30\%$ proerythroblasts
2022	WHO 5th Edition	Acute erythroid leukemia	1. Erythroid precursors $> 80\%$ of all bone marrow cells of which $\ge 30\%$ proerythroblasts (cases with erythroid precursors $< 80\%$ of cellularity are recognized)
2022	International Consensus Classification of Myeloid Neoplasms	AML with mutated TP53	 ≥20% bone marrow or blood blasts or meets criteria for pure erythroid leukemia Any somatic TP53 mutation (VAF > 10%)

Evolution of Diagnostic Criteria and Nomenclature of Erythroid-predominant Myeloid Neoplasms

DOI: 10.1002/jha2.676

SHORT REPORT

Erythroleukemia: Classification

Nathalie Cervera¹ IArnaud Guille¹José Adélaïde¹Marie-Anne Hospital²Sylvain Garciaz²Marie-Joelle Mozziconacci³Norbert Vey²Véronique Gelsi-Boyer^{1,3}Daniel Birnbaum¹

eJHaem

British Society for Society

- As in other AMLs, additional alterations can be seen, especially in the *TP53*-mutated class 3 (partial / complete losses of 5q, 7q, 17p, 20q, deletions / breaks of *ETV6* at 12p, complex karyotypes).
- Pure AELs can harbor more than one *TP53* alteration
- Class 3 AELs may be secondary too, including to treatment for a previous disease

www.nature.com/bcj

Blood Cancer Journal (2022)12:147

ARTICLE OPEN

Check for updates

Pure (acute) erythroid leukemia: morphology, immunophenotype, cytogenetics, mutations, treatment details, and survival data among 41 Mayo Clinic cases

Kaaren K. Reichard ¹², Ayalew Tefferi ², Maymona Abdelmagid², Attilio Orazi³, Christina Alexandres⁴, Joanna Haack¹ and Patricia T. Greipp¹

- Five pts: disease progression from an underlying MPN (2 PV, 2 ET, 1 PMF) with NGS evidence of JAK2 V617F mutation.
- All 41 cases showed double *TP53* alterations

 two *TP53* deletions by karyotype (3%; N = 1),
 double *TP53* mutations by NGS (29%; N = 12)
 a combination of a *TP53* deletion and *TP53* mutation (68%; N = 28).

Primary : 14 cases Therapy-related: 14 cases Secondary: 12 cases Undetermined: 1 case

Our case: secondary? Therapy-related?

Clonal architecture evolution in Myeloproliferative Neoplasms: from a driver mutation to a complex heterogeneous mutational and phenotypic landscape *Leukemia* (2023) 37:957–963;

Nabih Maslah^{1,2}, Lina Benajiba^{3,4}, Stephane Giraudier 1^{2,2}, Jean-Jacques Kiladjian 2^{2,4,5 \le 1} and Bruno Cassinat 1^{2,2,5}

- Driver mutations (JAK2, CALR, MPL) but also additional mutations
 - intracellular signaling pathways, epigenetics (DNA methylation, post-translational modifications of histones), transcription factors, RNA splicing
- Both driver and additional mutations can be the first clonal event
- Intra-tumor heterogeneity (ITH) = molecularly and phenotypically distinct subclones
- Acquisition of several mutations over long periods, with certain mutations having an impact on the clinical course
 - ASXL1, EZH2, SRSF2 and IDH1/2 mutation = high molecular risk (HMR) in PMF pts
 - TP53, N/K-RAS, NFE2 associated with poorer outcome
 - TP53 mutations associated with risk of leukemic evolution in ET
- Accumulation of mutations is in itself an adverse prognostic factor in MPNs
 - Definition of prognostic scores including molecular data (MIPSS70, MIPSS70+, MTSS)
- Treatments during the long chronic phase can actively shape clonal fitness and evolution

Low-burden *TP53* mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and *JAK2* mutational status

B Kubesova^{1,6}, S Pavlova^{1,2,6}, J Malcikova^{1,2}, J Kabathova¹, L Radova², N Tom², B Tichy², K Plevova^{1,2}, B Kantorova^{1,2}, K Fiedorova², M Slavikova², V Bystry², J Kissova³, B Gisslinger⁴, H Gisslinger⁴, M Penka³, J Mayer^{1,2}, R Kralovics⁵, S Pospisilova^{1,2} and M Doubek^{1,2}

- In chronic MPN phase, TP53 defects are extremely rarely detected by Sanger sequencing or cytogenetics
- BUT they were shown to be common in post-MPN AML
- *TP53* mutations can be traced months or even years before leukemic transformation
 - Mutational burden remain low until complete p53 inactivation by losing the second allele (17p defects or second mutation), followed by rapid clonal expansion
- Different sensibility of detection methods of *TP53* alterations
 - Cytogenetics < Sanger seq < RT-PCR < "standard" NGS < "high sensibility" NGS
- Using ultra-deep NGS
 - *TP53* mutations are strongly associated with age in MPN
 - No significant age-independent association with HU therapy, disease type or MPN driver gene mutations

In our case

	2012 (PBMC, VAF)			2023 (BMMC, VAF)
	T-lymphocytes	Circulating NC		
JAK2 V617F	Absent	32%		71,6%
TP53 R273H	Absent	Absent		91.6%
TP53 R282W	Absent	Absent		1.2%
Karyotype	46, XX			del chr 17

When did TP53 alterations develop? How fast did TP53 alterations lead from chronic MPN to AML?

www.nature.com/bcj

Blood Cancer Journal (2022)12:147

ARTICLE OPEN Pure (acute) erythroid leukemia: morphology, immunophenotype, cytogenetics, mutations, treatment details, and survival data among 41 Mayo Clinic cases

Kaaren K. Reichard ()^{1 \Versigned}, Ayalew Tefferi ()², Maymona Abdelmagid², Attilio Orazi³, Christina Alexandres⁴, Joanna Haack¹ and Patricia T. Greipp¹

... pathologists may experience trepidation in rendering such a diagnosis given the gravity of a reported approximately <6 month overall median survival

- Hematologists
- Pathologists
- Biologists and Technicians (FC, cytogenetics and molecular analyses)

Thanks:

Prof Elisa Rumi, Dr Oscar Borsani, Dr Cristina Picone, Dr Daniela Pietra SC Ematologia Dr Erica Travaglino, Dr Francesca Antoci SC Anatomia Patologica