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From synthetic biology, to tissue engineering, to synthetic
matrix biology
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My original quest: What does it take to make cardiac
tissue engineered products?

Roadmap (from 2010):

« Organ replacement: 20
years, >20B cells,
different cell types

* Regenerative medicines: 4
10 years, >100Ms cells,

* Drug discovery: 5years,
<1M cells, single/multiple ©
cell types -

Roadblocks:
* Cells as building blocks

* High-quantity
* High-quality




Agenda

1.

Background: Organ-chips in precision and regenerative medicine

My work with the heart-chip in Boston

My work with regenerative cardiovascular prostheses in Zurich

My work in Synthetic Matrix Biology in Pavia

Discussion



Organs-on-chips (OOC) are fail-fast/cheap platforms
for predictive pre-clinical investigations

Pharma drug development cycle
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« The cost of getting a drug to the market + Failures in the clinical trial phase are
has doubled yearly over the last 30 yrs ethical and economical catastrophes

OOC are assays meant to fail candidate compounds pre-clinically

Fordyce et al, JACC 2015; Harrer et al, Trends Pharmacol Sci, 2019



Organs-on-chips (OOC) are fail-fast/cheap platforms
for predictive pre-clinical investigations
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The Wyss/Emulate approach: General-purpose OOCs
for safety, efficacy, and everything in between
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The Harvard Wyss Institute OOC
« Human cell types + biomimetic stretch

« ~50 M$ in DARPA/NIH funding

Overview @

Total Funding Amount $95M CB Rank (Company) 3,248

Emulate
Emulate is a private company focused on commercializing Organs-on-Chips.
Boston, Massacl husetts, United States

Cate

H: egior

Biotechnology, Health Care, Medical
ater Boston Area, East Coast, New England

Daniel Levner, Geraldine A. Hamilton, James Coon
AAAAAA

View on Twitter &

I ivate company focused on Org: hips as an human platform that achieves a new standard fol
that to and diseases can be accurately predicted. Through co-innovation with collaborators

Emulate, Inc
« >100 M$ in private investments

 Co-development deals with Pharma

Emulate, the dominant player in this market, doesn’t have a heart chip

articol/lung
intermediul-biotehnologiei/. Crunchbase


https://raportuldegarda.ro/articol/lung-on-a-chip-cum-pot-fi-descoperite-noi-medicamente-pentru-fibroza-pulmonara-idiopatica-prin-intermediul-biotehnologiei/
https://raportuldegarda.ro/articol/lung-on-a-chip-cum-pot-fi-descoperite-noi-medicamente-pentru-fibroza-pulmonara-idiopatica-prin-intermediul-biotehnologiei/

Heart-chips powered by human pluripotent stem cell-
derived cardiomyocytes for disease modeling

Cell sources
+ Patient-specific

e Genome-edited
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Hinson et al, Science, 2015; Wang et al, Nat Medicine, 2014



Agenda

1.

Background: Organ-chips in precision and regenerative medicine

My work with the heart-chip in Boston

My work with regenerative cardiovascular prostheses in Zurich

My work in Synthetic Matrix Biology in Pavia

Discussion



Microfabrication Technigues to Recapitulate Cardiac
Cell and Tissue Structure

Contractile structure in the heart: Mlcrocontact printing
PDMS
stamps  cardiomyocytes

ECM
features

e Laminar tissues
« Aligned myofibrils
e Striated muscle cells

N\ Fluo beads #2

a-actinin, B-catenin, fibro

Scale: ~10 cm Scale: ~250 um

Scale: ~25 um Scale: 10 um

Camelliti, Card Res, 2005. Courtesy: Dr. Gosain and Brey; Pasqualini*, Plos ONE, 201 10



Multiparametric assessment of cardiac tissue
structure and function in the Heart-chip

Rat cardiomyocyte

calcium membrane

/\ 20 mV

100 uM
2 uN

— 100 ms

Functional signals in the heart:

« Action potential
e« Calcium transient
« Contractile force

Pasqualini, Stem Cell Reports, 2015

Gene Expression Structure
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Heart-Chip Assay:

« (Gene expression
* Electrochemical coupling
* Contractility
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Quantifying the structural maturation of hiPSC-CMs
using a heart-chip platform

rpCM 6 hr Fourier
leferentlated Phenotype (D) Spectrum

Fourier 30% of hiPS-CM have mature

Spectrum

contractile structure

« Training dataset: Primary
engineered tissues

e Test set: hiPS-CM

* Machine learning: Three
independent classifiers

m6hr . 48 hr
Fourier

rpCM 48 hr b Fourier i hiCM 96 hr 5,3 B L R o
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Pasqualini, Stem Cell Reports, 2015
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A heart-chip potency assay for cardiac cell therapy
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Chong, Nature, 2014; Pasqualini, J. Cell Bio, 2016
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We modeled the
(non-)therapeutic
effect seen in large
animal studies

13



Heart-chip based disease-modeling

A LD Optical E
488nm light / stimulation unit
uided b
ﬁgber optigs X Anisotropic cardiac
cable muscle tissue
(with ChR2 &
calcium indicator, xRhod-1)
Thin film
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propagation Contraction:

bending
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Park et al, Circ, 2019
Heart chip Engineered WT and CVPT tissues
+ Optogenetics « 2.5D platform
* Muscular thin film * Laminar tissue architecture
+ Custom-made to have larger areas * Well-developed contractile apparatus

to study calcium propagation » Electrically-competent tissues

Park et al, Circ, 2019 14



Tissue models from CPVT patient-derived hiPSC-CMs formed
rotors under an exercise-mimicking stimulation protocol

i
No ISO, 1.5 Hz pacing “No ISO, 1.5 Hz pacing

-
No ISO, 3.0 Hz *No ISO, 3.0 Hz

ISO, 1.5 Hz

ISO, 3.0 Hz IS0, 3.0 Hz
Healthy heart chip CPVT heart chip
* Regular calcium waves w/out ISO * Reentry with exercise-like stimulation

Park et al, Circ, 2019 15
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The extracellular matrix (ECM) in the heart
Whole heart 2D layer Single cells

Ott, Taylor@UMn, 2008 Guyette, Ott@MGH, Circ Res, 2016 Spinale@MUSC, Phy Rev, 2007
: » e ATV

TN

fibronectin ]
Scale: ~2.5cm Scale: ~250um

Multiscale organization of the extracellular matrix (ECM):

* Fibrous, compact ECM maintain multi-chambered organ structure
* Anisotropic distribution of ECM proteins sustain laminar tissues

« ECM boundaries that physically constrained single cells

17

Biomimetic ECM cues to engineer native-like cardiac tissues



Decellularized ECM from tissue-engineered heart vessels is

highly regenerative in a sheep model after one year.

Distal anastomosis

#++. native

native

graft

Source: Simon Hoerstrup’s LifeMatrix project (GMP fabrication and GLP analysis in preparation for a clinical trial)
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The regenerative decellularized ECM is acomplex mix of
structural and functional proteins (and even more with sugars)

Genetic :
Infqrmat_ionf . .
O EUEE  Regenerative decellularized human

Environmental ECM:

Informat_ion ¢ ~6000 proteins
Processing

By gene ontology:

X *+ ~60% of ECM proteins are
@,ﬁ structural.

Cellular « ~40% of ECM proteins are

Processes functional.

Organismal Metabolism
Systems

Source: Pasqualini et al, 2018 — Unpublished GLP proteomics by Biognosis, AG 19
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What | used to believe: We could build a heart by sticking together

high-quality cells

hiCM 96 hr

Microcontact printing ' e ot S Uikicn Phstiotys
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| was wrong #1! Stem-cell-derived cardiac cells are fetal, so we should use
them to grow hearts out, not build them.

Building a heart Growing a heart

Ventiicle ~ -~

. <Developing , - —~ [ &
“interventricular septum

22



| was wrong #2! If the ECM s just the glue that keeps the cells
together, why is it so complex?!

Cells: functional blocks Decell. human tissues proteomics:

ECM: structural glue 40% of ECM proteins are functional.

-

Genetic

Infqrmat_lorf
Processing

Environmental
Information
Processing

"N
[ |
N
Cellular

Processes

organismal Metabolism
Systems

Source: Pasqualini et al, 2018 — Unpublished GLP proteomics by Biognosis, AG 23



Synthetic Matrix Biology: Can use ECM parts to program tissues in
the same way synthetic biologists use DNA parts to program cells?

Heart development in mouse
Myocardial morphogenesis: Trabeculation

0 ECM input Cell state Output

Laminin - EEREIAREARRNECLL ) —>Maturation
v '~Tubuliny ! i
1 Y | = 1 f

Agrin »DGC—(YAP) »Proliferation
- TGF-B
A -

. Hyaluronic S :IF-)I(;\MM
Trabeculae acid 23 ) ——Migration

Del Monte-Nieto, 2018* Scale: 500 um

Mo use heart tube: Myocytes on agrin, Endothelial
cells on laminin, .



Team: A multidisciplinary, diverse group of people committed
to understanding biology through engineering and vice-versa

Senior scientists Post-doctoral fellows

Moises di Sante Alessandro Enrico Julius Zimmermann Sandipan Chattaraj Saranya Vasudevan
Molecular Biology Materials science Modeling and Polymer physics Molecular dynamics
simulation / Image
analysis
PhD students

Agenda: New tools
1. New Cells
2. New Cells

3' ECM_Ce” Interactions Bohdana Horda Eloisa Torchia Melissa Pezzotti
Materials and Mechanobiology in Advanced optical
manufacturing for engineered cell culture methods in tissue

bioengineering platforms engineering

25



FUCCIplex: A multiplexable
cell cycle sensor for
Imaging-based phenotyping



What do you need to make a cardiac tissue model?
Cardiac (muscle) cells and their extracellular matrix (ECM)

Contractile structure in the heart: ECM Multiscale organization:
« Laminar tissues * Multi-chambered organ

« Aligned myofibrils * Anisotropic 2D distribution

« Striated muscle cells « Single-cell constraints

a-actinin, B-catenin, fibro

fibronectin —

Scale: ~10 cm

Scale: ~25 um Scale: 10 um

Sources: (Left) Camelliti, Card Res, 2005. Courtesy: Dr. Gosain and Brey; (Right) Ott, Taylor @UMn, 2008, Guyette, Ott@MGH, Circ Res, 2016, Spinale@MUSC, 27
Phy Rev, 2007



FUCCIplex: A cell cycle sensor that can be multiplexed with
existing GFP/RFP-based sensors for cell structure/function

PROBLEM SOLUTION

@ %
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Sources: Pasqualini, JCB 2016 (top) and Koh et al, JCS 2017 (bottom)
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FUCClIplex is a good cell cycle sensor in HaCaT cells
also expressing RFP-LifeAct

MiRFP670-geminin

leG1-G1 G1~ 38%

mTurquoise-cdtl

Cell counts

|
J
Actin, J -

Scale bar 25 um DNA content
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Further multiplexing with GFP-based calcium sensors
(Fluo-4) suggests cell cycle-dependent ATP-response

Raw data

e HACAT cells calcium
23 transient

241
18
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o
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Fluo-4 calcium sensitive dye . &
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FUCCIplex in hiPSC and hiPSC-derived cardiomyocytes:
strategies for drug testing or regenerative medicine

Multinucleation



https://link.springer.com/article/10.1007/s11886-022-01682-9

CAG-FUCCIplex expression from human Rosa26 to
have a 4-color reporter line for all the tests

5-HAR BSD CAG FUCCIplex  3-HAR

— Safe harbor locus <«

R26-prom— 5’-HAR | 3-HAR |—

\ ¢

— Safe harbor locus -—

R26-prom —5-HAR BSD - CAG FUCClplex - 3-HAR —

Actin, G1, SIG2/M Scale 25 um
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Regenerative medicine: hRosa26-CAG-FUCCIplex enables imaging
of hiPSC-CM cell cycle re-entry with Agrin treatment

Actin, G1, S/IG2/M Scale 100 and 25 um

33



Multinucleation

Polyploidization

Regenerative medicine: We can look at calcium transients and
sarcomere structures before and after cell cycle events

Actin, G0,S/G2/M Calcium transient Sarcomere length
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HYDRA: HYdrogel Dispensing
with Robotic Automation

HYDRA method in a high
throughput well
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We develop HYDRA (HYdrogel Dispensing with Robotic Automation) to
automate the fabrication of thin hydrogels in multi-well plates.

Working volumes in HT plates

96-well 384-well 1536-well

]

25-340 pL 15-110 pL 3-10 uL

Meniscus effect in HT wells

HYDRA method in a TC 96-well plate

00: 10 35:00

00:00 40

Hydrogel Hydrogel
dispensing aspiration

Zoom on
a single
well
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Feasibility — We characterized fish gelatin viscosity and stiffness
by chemically crosslinking it with transglutaminase (TG)

Chemical crosslinking 3
schematic Ny
-
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Transamidation reaction
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TG concentration
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Feasibility — We characterized fish gelatin hydrogel thickness
and flatness using confocal imaging.

3D rendering of HYDRA-like hydrogels Thickness measurements by varying gelatin
embedding fluorescent beads

concentrations

. 50 =5% wlvFG
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P b ""'..1_ e R £ . ®
PR T ey . = ** ¢
s R T
LNt o + LA
£ 20~ $3 ?%'} o
= L 2
=
(]
F1012¥4 3 .o
0 1 1 1
5% wivFG 10% wivFG 20% wivFG

38



Quantitative Phase Imaging compatibility — We demonstrate HYDRA
HTS plate can be used for imaging-based screening (drugs).

Dose

v

>
A
B
C
D
E
F -
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12.5 25 50 0.5 25 12.5
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0 Plastic
o Hydrogel

Scale bars: 50 pm

0.5 ng/mL Paclitaxel

2.5ng/mL Pacﬂtaxel

+ :12.5 ng/mL Paclitaxel

Holographic 48 hours imaging of HaCaT cells on

hydrogel thin films




Scalability - We move from a 96- to a 384-well plate scaling
hydrogel volumes.

96-well plate (12 ulL) 384-well plate (1 ulL)

b 4 ¥

q.

€

b .

¢

€6 %
g e ®

eA
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Scalability - We move from a 96- to a 384-well plate scaling
hydrogel volumes.

The wells with a meniscus are identified by detecting an overlap
between the hydrogel mask and the well wall mask contours.

Automated fluorescence imaging of Quality control single-gel analysis
hydrogel w/ beads




HYDRA 384-well plates can be used in advanced
fluorescence microscopy applications.

18-hour HaCaT cell proliferation
experiment High-resolution confocal imaging

Nuclei in S/G2 phase
Actin

Scalebars: 25 pm 42



Summary

1. HYDRA: High-throughput (really!!) engineered cell culture platforms to
study ECM-cell interactions (pre-print out by the end of the month)

2. TEMPO: a suite of genetically encoded suite of fluorescent sensors for
in hiPSCs (pre-print out by the end of the month)

But what about cell-ECM interactions?!



We can use FUCClIplex hiPSC to produce cardiac organoids or cardioids:
in-vitro models of cardiac morphogenesis

hiPSC-derived cardiac organoid (live)

Scale: 100 um

UMAP 2

@ Epicardial cells
@ Mature Cardiomyocites
01 Maturing cardiomyocites
Proliferating cardiomyocites
Proliferating fibroblasts ﬁ
.3 - ?
5 A
g Cardiac fibroblasts
@ Cardiac progenitors
@ Cardiomyocites
@ Conductive mature cardiomyocites
@ Endotelial
T T T T T T
R WO © Q o O

UMAP 1

With Bertero’s lab @ UniTO
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We can further mine the dataset with the Matrisome database: by gene
ontology ECM-associated genes participate in myocardial morphogenesis

Basement membrane organization

Collagen fibril organization

Extracellular matrix organization
Extracellular structure organization

External encapsulating structure organization
Cell-substrate adhesion

Vasculature development

Blood vessel development

Circulatory system development

Animal organ morphogenesis

Cell adhesion

Anatomical structure formation involved in morphogenesis
Cell migration

Tissue development

Cell motility

Localization of cell

Locomotion

Anatomical structure morphogenesis
Movement of cell or subcellular component
System development

Analysis with shinyGO 0.8 (http:/bioinfor matics.sdstate.edu/gol)
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http://bioinformatics.sdstate.edu/go/

Interaction network analysis further supports an integrative role of the ECM

in the biological processes linked with cardiac development.

~
B

Basement membrane
organization

mal encapsulating
rganization

Eﬁgcéllular matrix

organization

Collagen fibril organization

I~ Vasculature development

pY: T cCirculatory system
y development
Tissue development

N/
subcellular component W

Locomotion  apatomical structure
formation involved in

morphogenesis

Analysis with shiny GO 0.8 (http:/bioinformatics.sdstate.edu/gol/)
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Agrin and laminin genes are differentially expressed
across cell types

UMAP of Agrin & Laminin Genes Expression
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Hyaluronic acid genes are differentially expressed

across cell types

UMAP of Hyaluronic acid Genes Expression
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Thinking Outside the Cell: Let’s make a
Functionally Annotated ECM Atlas!

Environmental
Information

o8& Cell=lar
.~ " Processes
Organismal Metabo'%@
oy o9

Systems
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