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My original quest: What does it take to make cardiac 
tissue engineered products?

Roadmap (from 2010): 

• Organ replacement: 20 

years, >20B cells, 

different cell types

• Regenerative medicines: 

10 years, >100Ms cells,

• Drug discovery: 5 years, 

<1M cells, single/multiple 

cell types

Roadblocks:

• Cells as building blocks

• High-quantity

• High-quality
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1. Background: Organ-chips in precision and regenerative medicine

2. My work with the heart-chip in Boston

3. My work with regenerative cardiovascular prostheses in Zurich

4. My work in Synthetic Matrix Biology in Pavia

5. Discussion

Agenda



5|Fordyce et al, JACC 2015;  Harrer et al, Trends Pharmacol Sci, 2019

Eroom law 

• The cost of getting a drug to the market 

has doubled yearly over the last 30 yrs

Drug discovery economics

• Failures in the clinical trial phase are 

ethical and economical catastrophes 

Organs-on-chips (OOC) are fail-fast/cheap platforms 
for predictive pre-clinical investigations

OOC are assays meant to fail candidate compounds pre-clinically
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Organs-on-chips (OOC) are fail-fast/cheap platforms 
for predictive pre-clinical investigations



7|https://raportuldegarda.ro/articol/lung-on-a-chip-cum-pot-fi-descoperite-noi-medicamente-pentru-fibroza-pulmonara-idiopatica-prin-
intermediul-biotehnologiei/. Crunchbase

The Harvard Wyss Institute OOC

• Human cell types + biomimetic stretch

• ~50 M$ in DARPA/NIH funding

Emulate, Inc

• >100 M$ in private investments

• Co-development deals with Pharma

The Wyss/Emulate approach: General-purpose OOCs 
for safety, efficacy, and everything in between

Emulate, the dominant player in this market, doesn’t have a heart chip

https://raportuldegarda.ro/articol/lung-on-a-chip-cum-pot-fi-descoperite-noi-medicamente-pentru-fibroza-pulmonara-idiopatica-prin-intermediul-biotehnologiei/
https://raportuldegarda.ro/articol/lung-on-a-chip-cum-pot-fi-descoperite-noi-medicamente-pentru-fibroza-pulmonara-idiopatica-prin-intermediul-biotehnologiei/


8|Hinson et al, Science, 2015; Wang et al, Nat Medicine, 2014

Heart-chips powered by human pluripotent stem cell-
derived cardiomyocytes for disease modeling

Cell sources

• Patient-specific

• Genome-edited

Type of diseases

• Genetic disorders

• Single mutations

Key application in 

this space is the 

ability to model 

diseases
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Contractile structure in the heart:

• Laminar tissues

• Aligned myofibrils 

• Striated muscle cells

Scale: ~10 cm Scale: ~250 um

Scale: ~25 um Scale: 10 um

α-actinin, -catenin, fibro
α-actinin, actin, chromatin

Microcontact printing

calcium membrane

Microfabrication Techniques to Recapitulate Cardiac 
Cell and Tissue Structure

Camelliti, Card Res, 2005. Courtesy: Dr. Gosain and Brey; Pasqualini*, Plos ONE, 201
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20 mV

100 uM

2 uN

Pasqualini, Stem Cell Reports, 2015

Functional signals in the heart:

• Action potential

• Calcium transient

• Contractile force 

Heart-Chip Assay:

• Gene expression

• Electrochemical coupling 

• Contractility

Multiparametric assessment of cardiac tissue 
structure and function in the Heart-chip

calcium membrane

Electrical Activity

Gene Expression Structure

ContractilityElectrical Activity

Structure

Contractility

Heart-on-a-Chip

Gene Expression

100 ms

Rat cardiomyocyte



12|Pasqualini, Stem Cell Reports, 2015

Quantifying the structural maturation of hiPSC-CMs 
using a heart-chip platform

30% of hiPS-CM have mature 

contractile structure

• Training dataset: Primary 

engineered tissues

• Test set: hiPS-CM

• Machine learning: Three 

independent classifiers

Scale: 25 um-actinin chromatin
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Chong, Nature, 2014; Pasqualini, J. Cell Bio, 2016

A heart-chip potency assay for cardiac cell therapy

Immature stem cells

Mature spared muscle

Neonate

mES/miPS

MatureImmature

Scale: 10 um

Mature Mature

Immature Mature

Vinculin

Vinculin

Actin

Actin Actin

-catenin

Cx-43

We modeled the 

(non-)therapeutic 

effect seen in large 

animal studies



14|Park et al, Circ, 2019

Heart chip

• Optogenetics

• Muscular thin film

• Custom-made to have larger areas 

to study calcium propagation

Engineered WT and CVPT tissues

• 2.5D platform

• Laminar tissue architecture

• Well-developed contractile apparatus

• Electrically-competent tissues

Heart-chip based disease-modeling

Park et al, Circ, 2019



15|Park et al, Circ, 2019

Healthy heart chip

• Regular calcium waves w/out ISO

Tissue models from CPVT patient-derived hiPSC-CMs formed 
rotors under an exercise-mimicking stimulation protocol

CPVT heart chip

• Reentry with exercise-like stimulation
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17|Biomimetic ECM cues to engineer native-like cardiac tissues

Multiscale organization of the extracellular matrix (ECM):

• Fibrous, compact ECM maintain multi-chambered organ structure

• Anisotropic distribution of ECM proteins sustain laminar tissues

• ECM boundaries that physically constrained single cells

Whole heart 2D layer Single cells
Ott, Taylor@UMn, 2008 Guyette, Ott@MGH, Circ  Res, 2016 Spinale@MUSC, Phy Rev, 2007

Scale:  ~2.5 cm Scale:  ~250 um Scale:  ~25 um

The extracellular matrix (ECM) in the heart



18|Source: Simon Hoerstrup’s LifeMatrix project (GMP fabrication and GLP analysis in preparation for a clinical trial)

Decellularized ECM from tissue-engineered heart vessels is 

highly regenerative in a sheep model after one year.



19|Source: Pasqualini et al, 2018 – Unpublished GLP proteomics by Biognosis, AG

The regenerative decellularized ECM is a complex mix of 
structural and functional proteins (and even more with sugars)

Regenerative decellularized human 

ECM:

• ~6000 proteins

By gene ontology:

• ~60% of ECM proteins are 

structural.

• ~40% of ECM proteins are 

functional.
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21|Pasqualini et al, 2014, 2015, 2016, 2018; US20160203262A1

What I used to believe: We could build a heart by sticking together 

high-quality cells

α-actinin, actin, chromatin

Microcontact printing

scale bars = 10 μm
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I was wrong #1! Stem-cell-derived cardiac cells are fetal, so we should use 
them to grow hearts out, not build them.

Building a heart Growing a heart



23|Source: Pasqualini et al, 2018 – Unpublished GLP proteomics by Biognosis, AG

I was wrong #2! If the ECM is just the glue that keeps the cells 
together, why is it so complex?!

Cells: functional blocks

ECM: structural glue

Decell. human tissues proteomics:

40% of ECM proteins are functional.
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Synthetic Matrix Biology: Can use ECM parts to program tissues in 

the same way synthetic biologists use DNA parts to program cells? 

Complexity

Mouse heart tube: Myocytes on agrin, Endothelial 

cells on laminin, hyaluronic acid. 

Del Monte-Nieto, 2018*                       Scale: 500 m

Heart development in mouse
Myocardial morphogenesis: Trabeculation

Trabeculae

ECM input Cell state Output
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Team: A multidisciplinary, diverse group of people committed 

to understanding biology through engineering and vice-versa

Agenda: New tools
1. New Cells
2. New Cells
3. ECM-Cell interactions



FUCCIplex: A multiplexable 
cell cycle sensor for 
imaging-based phenotyping
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What do you need to make a cardiac tissue model? 
Cardiac (muscle) cells and their extracellular matrix (ECM)

Contractile structure in the heart:

• Laminar tissues

• Aligned myofibrils 

• Striated muscle cells

Scale: ~10 cm Scale: ~250 um

Scale: ~25 um Scale: 10 um

α-actinin, -catenin, fibro

calcium membrane

Sources: (Left) Camelliti, Card Res, 2005. Courtesy: Dr. Gosain and Brey; (Right) Ott, Taylor@UMn, 2008, Guyette, Ott@MGH, Circ  Res, 2016, Spinale@MUSC, 
Phy Rev, 2007

ECM Multiscale organization:

• Multi-chambered organ

• Anisotropic 2D distribution

• Single-cell constraints



28|Sources: Pasqualini, JCB 2016 (top) and Koh et al, JCS 2017 (bottom) 

FUCCIplex: A cell cycle sensor that can be multiplexed with 

existing GFP/RFP-based sensors for cell structure/function

DAPI GFP-mES Neonate

Scale: 10 um
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Physiological signals in 
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• FURA-RED 

• GFP

Tracking of cell cycle in 

pancreatic cancer cells 
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• RFP-cdt1
• GFP-geminin
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FUCCIplex is a good cell cycle sensor in HaCaT cells 
also expressing RFP-LifeAct

0 min
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255 min G1 ~ 38%
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Further multiplexing with GFP-based calcium sensors 
(Fluo-4) suggests cell cycle-dependent ATP-response

Raw data

Fluo-4 calcium sensitive dye

*

1

2 G1

S/G2/M
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FUCCIplex in hiPSC and hiPSC-derived cardiomyocytes: 
strategies for drug testing or regenerative medicine

Source: [left  https:// link.springer.com/article/10.1007/s11886-022-01682-9 

G0

https://link.springer.com/article/10.1007/s11886-022-01682-9
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CAG-FUCCIplex expression from human Rosa26 to 

have a 4-color reporter line for all the tests

Actin, G1, S/G2/M Scale 25 um
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Regenerative medicine: hRosa26-CAG-FUCCIplex enables imaging 

of hiPSC-CM cell cycle re-entry with Agrin treatment

1
2

3

1

Actin, G1, S/G2/M Scale 100 and 25 um



34|

Regenerative medicine: We can look at calcium transients and 

sarcomere structures before and after cell cycle events
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HYDRA: HYdrogel Dispensing 
with Robotic Automation
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We develop HYDRA (HYdrogel Dispensing with Robotic Automation) to 

automate the fabrication of thin hydrogels in multi-well plates.

Working volumes in HT plates

Meniscus effect in HT wells

HYDRA method in a TC 96-well plate

Zoom on 

a single 

well

z

Hydrogel 

dispensing

Hydrogel 

aspiration
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Feasibility – We characterized fish gelatin viscosity and stiffness 

by chemically crosslinking it with transglutaminase (TG)

Fish gelatin viscosity

Chemical crosslinking 

schematic

Crosslinking kinetic

Fish gelatin stiffness by varying gelatin or

TG concentration
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3D rendering of HYDRA-like hydrogels 

embedding fluorescent beads

Thickness measurements by varying gelatin 

concentrations

Feasibility – We characterized fish gelatin hydrogel thickness 
and flatness using confocal imaging.



39|Scale bars: 50 µm

Quantitative Phase Imaging compatibility – We demonstrate HYDRA 

HTS plate can be used for imaging-based screening (drugs).

Holographic 48 hours imaging of HaCaT cells on 

hydrogel thin films

Dose
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Scalability - We move from a 96- to a 384-well plate scaling 

hydrogel volumes.

96-well plate (12 uL) 384-well plate (1 uL) 
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Automated fluorescence imaging of 

hydrogel w/ beads

Quality control single-gel analysis

Scalability - We move from a 96- to a 384-well plate scaling 

hydrogel volumes.



42|Scale bars: 25 m

18-hour HaCaT cell proliferation 

experiment High-resolution confocal imaging

HYDRA 384-well plates can be used in advanced 

fluorescence microscopy applications.

Nuclei in G1 phase

Nuclei in S/G2 phase

Actin

Actin

Tubulin
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1. HYDRA: High-throughput (really!!) engineered cell culture platforms to 

study ECM-cell interactions (pre-print out by the end of the month)

2. TEMPO: a suite of genetically encoded suite of fluorescent sensors for 

in hiPSCs (pre-print out by the end of the month)

But what about cell-ECM interactions?!

Summary
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We can use FUCCIplex hiPSC to produce cardiac organoids or cardioids: 

in-vitro models of cardiac morphogenesis

hiPSC-derived cardiac organoid (live)

Scale: 100 um With Bertero’s lab @ UniTO



45|Analysis with shinyGO 0.8 (http://bioinformatics.sdstate.edu/go/)

We can further mine the dataset with the Matrisome database: by gene 

ontology ECM-associated genes participate in myocardial morphogenesis

http://bioinformatics.sdstate.edu/go/


46|Analysis with shinyGO 0.8 (http://bioinformatics.sdstate.edu/go/)

Interaction network analysis further supports an integrative role of the ECM 

in the biological processes linked with cardiac development.

http://bioinformatics.sdstate.edu/go/
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Agrin and laminin genes are differentially expressed 
across cell types
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Hyaluronic acid genes are differentially expressed 
across cell types
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Thinking Outside the Cell: Let’s make a 
Functionally Annotated ECM Atlas!
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